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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Original ADM1 can only represent 
anaerobic digestion in the absence of 
perturbation. 

• The co-occurring of acids and ammo-
nium accumulation distort the in-
hibitions effect. 

• Recoverable overload was observed 
after loading higher than 7 g COD 
L− 1d− 1. 

• New inhibitions by product are required 
to improve ADM1 predictability. 

• Modified ADM1 keep the suitability to 
fit the data without perturbance.  
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A B S T R A C T   

Anaerobic digestion (AD) of microalgae is an intriguing approach for bioenergy production. The scaling-up of AD 
presents a significant challenge due to the systematic efficiency losses related to process instabilities. To gain a 
comprehensive understanding of AD behavior, this study assessed a modified version of the anaerobic digestion 
model No1 (ADM1) + Contois kinetics to represent microalgae AD impacted by overloading. To this end, two 
new inhibition functions were implemented: inhibition by acetate for acidogenesis/acetogenesis and total vol-
atile fatty acids for hydrolysis. This proposed ADM1 modification (including Contois kinetics) simulated AD 
behavior during the stable, disturbed and recovery periods, showing that the inhibition functions described in the 
original ADM1 cannot explain the AD performance under one of the most common perturbations at industrial 
scale (overloading). The findings underscore the importance of refining the inhibitions present in original ADM1 
to better capture and predict the complexities of microalgae AD against overloading.   

1. Introduction 

The increasing energy demand is drawing attention to the develop-
ment of renewable sources to mitigate energy insecurity and the rise of 

global energy prices. In 2022, Europe experienced an energy demand 
increase averaging 1–2 % (Ritchie et al., 2022), which provoked an 
energy supply risk along with an alarming rise of 40 % oil prices and 
over 130 % of gas price (Davenport and Wayth, 2023). In this context, 
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anaerobic digestion (AD) has been positioned as a focal point of tech-
nological advancement since a significant source of renewable energy 
(biogas) can be supplied through this biotechnology. AD is a well-known 
process wherein a complex and synergic microbiome is able to transform 
a wide range of organic residues into biogas, contributing to a circular 
economy. Among the residual organic biomass employed as feedstock, 
microalgae biomass produced during wastewater treatment (WWT) 
using photobiotechnologies has been extensively studied in the last 
decade. These studies highlights the numerous advantages of integrating 
both technologies, microalgae-based WWT and biogas production via 
AD of microalgae culture in wastewater (Bele et al., 2023). Despite the 
high methanogenic potential of microalgae biomass (Marques et al., 
2019; Olsson et al., 2014; Rusten and Sahu, 2011), long-term biogas 
production has not been optimized at large-scale since process insta-
bility is often encountered (Cavinato et al., 2017; European Commission, 
2022, 2018). The scaling-up of AD processes leads to a systematic loss of 
efficiency, which is normally related to unexpected perturbations. 
Among the unforeseen events that can occur at industrial scale, those 
related to the upstream technology (microalgae culture) are the most 
difficult ones to control and mitigate. In this regard, changes in micro-
algae composition, population and concentration are commonly found 
in microalgae-based WWT (Morillas-España et al., 2022). These un-
avoidable variations are mainly related to seasonal changes in terms of 
weather conditions and wastewater composition (Morillas-España et al., 
2020), which subsequently alter the harvesting/dewatering steps and 
AD feeding. Besides, clogged pipes, broken or malfunctioning pumps 
and controllers are also commonly found in industrial facilities, aggra-
vating the AD perturbation. Upon such events, microbial communities 
are affected and the methane production yield becomes unstable, ending 
up in biogas production failure when corrective actions are not taken 
immediately. Anticipating failure is crucial for applying prevention and/ 
or mitigation countermeasures that ensure process stability and tech-
nology profitability in the long term. To this end, dynamical mathe-
matical modeling can be used as a tool to understand and predict process 
behavior. One of the most recognized models to describe the main 
bioreactions occurring in AD is the Anaerobic Digestion Model No.1 
(ADM1) developed by the IWA group (Batstone et al., 2002a,b). Previ-
ous investigations have demonstrated that a modified version of ADM1 
that includes Contois kinetics better represents the hydrolysis stage in 
AD of microalgae biomass (Mairet et al., 2011; Passos et al., 2015). 
However, those investigations only addressed conventional AD of 
microalgae under optimal conditions and without considering potential 
perturbances, such as a system overloading. An AD overload normally 
leads to organic acids accumulation that provokes the inhibition of the 
process by a pH drop. Although previous authors assessed ADM1 to 
reproduce the inhibition by organic acids (Mo et al., 2023, Vavilin et al., 
2008) the different microbial robustness encountered among hydrolytic, 
acidogenic, acetogenic and methanogenic microorganism against in-
hibitors has been neglected. The novelty of this study was to modify 
ADM1 to describe AD of microalgae including process failure and re-
covery, considering the simultaneous inhibition of various steps of AD 
when the process was subjected to an overload. For such a purpose, the 
modification of ADM1 and its corresponding validation was conducted 
by using the experimental data retrieved from the microalgae AD sub-
jected to an organic loading rate shock in reactors operated in contin-
uous mode. 

2. Material and Methods 

2.1. Microalgae biomass used as feedstock 

Microalgae biomass (Scenedesmus > 90 %) cultured in wastewater 
was used as a feedstock (supplied by Centro IFAPA, La Cañada-Almería, 
Spain). Scenedesmus possesses a rigid cell-wall that exhibit high resis-
tance to biological degradation (Passos et al., 2014a). In order to avoid 
problems related to the cell wall disintegration during the microalgae 

conversion into biogas, an enzymatic pretreatment was applied 
following the procedure described by Mahdy et al. (2015). Table 1 
shows the microalgae biomass characterization in terms of total and 
soluble chemical oxygen demand (TCOD and SCOD, respectively), total 
solids (TS), volatile solids (VS), ammonium (N-NH4

+), total nitrogen 
(TN), protein, carbohydrate, lipids, ash and biochemical methane po-
tential (BMP). 

To apply an OLR shock, the microalgae concentration in the influent 
was dynamically changed from 29.6 g TCOD⋅L− 1 (corresponding to an 
OLR of 1.5 g TCOD⋅L− 1⋅d− 1) to 126.1 g TCOD⋅L− 1 (corresponding to an 
OLR of 7 g TCOD⋅L− 1⋅d− 1). Accordingly, a concomitant increase in TN 
influent took place (from 1.6 to 5.9 g N⋅L− 1). It is important to clarify 
that the influent flow rate was not modified throughout the experiment, 
provoking the OLR increase only by rising the COD concentration in 
microalgae biomass used as feedstock. 

2.2. Experimental setup 

To evaluate microalgae AD behavior against OLR perturbance, four 
continuous stirred tank reactors (CSTRs) were run in parallel. Two 
CSTRs (biological replicates) were used as control and two CSTRs 
(biological replicates) were subjected to an OLR perturbation. The 1.5-L- 
CSTRs (0.5 L of headspace) were inoculated with sludge collected from a 
conventional anaerobic digester located in a wastewater treatment plant 
(Arroyo del Soto – Móstoles, Madrid, Spain). A magnetic stirrer (Hei- 
PLATE Mix 20L, Heidolph, DE) was used to homogenize the fermenta-
tion broth in the CSTRs. The temperature was controlled using a ther-
mostatic water bath (F12-ED v2.0, Julabo, DE). Temperature, pH and 
oxidation–reduction potential were online monitored using sensors 
installed in each CSTRs (C3040 – Consort, BE). The biogas production 
was daily measured by connecting the headspace of the CSTRs to a flow 
meter (MilliGascounters – Ritter, DE). The four CSTRs were initially 
operated under the optimal conditions described for biogas production 
of pretreated microalgae: 35 ◦C, an OLR of 1.5 g TCOD⋅L− 1⋅d− 1 and a 
hydraulic retention time of 18 days (Mahdy et al., 2015). Once AD 
reached the steady state, two CSTRs were used as control (replicates) 
wherein no perturbance was applied, and two CSTR (replicates) were 
subjected to a stepwise OLR increase from 1.5 to 7 g TCOD⋅L− 1⋅d− 1 for 
45 days to simulate an uncontrolled overload. To recover the process, 
optimal conditions were again implemented in the perturbed CSTRs 
after 45 days. 

2.3. Analytical methods 

Microalgae composition was characterized in terms of TCOD, SCOD, 
TS, VS, ash, NH4

+-N and total Kjeldahl nitrogen (TKN) according to 
Standard Methods (APHA, 2017). The phenol–sulfuric method (Dubois 
et al.,1956) was used to determine the content of carbohydrates, while 
protein concentration was calculated using a TKN-to-protein conversion 
factor of 5.95 (González-López et al., 2010).The percentage of lipids (dry 

Table 1 
Characterization of pretreated microalgae biomass used as feedstock (mean ±
standard deviation).  

Parameter Microalgae biomass 

TCOD (g⋅L− 1)  29.6 ±2.0 
SCOD (%)  41.2 ±5.9 
TS (%w/w)  1.71 ±0.24 
VS (%)*  86.5 ±3.0 
TN (%)*  10.1 ±0.1 
N-NH4

+ (g N⋅L− 1)  0.7 ±0.2 
Carbohydrate (%)*  17.8 ±0.5 
Protein (%)*  53.1 ±2.4 
Lipid (%)*  10.2 ±1.0 
Ash (%)*  13.5 ±3.0 
BMP (mLCH4⋅g CODinfluent

− 1 )  196.7 ±6.4  

* Percentage calculated based on dry matter content. 
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matter basis) was determined by subtracting the percentage of carbo-
hydrate, protein and ash from 100 %. BMP and the corresponding 
microalgae biodegradability were obtained according to the procedure 
described by Raposo et al. (2011). 

The CSTRs were monitored by analyzing TCOD, SCOD, TS, VS and 
NH4

+-N in the effluent as described above and compared with the in-
fluents fed in the digesters. Metabolites including acetic acid (HAc), 
propionic acid (HPro), isobutyric acid (isoHBu), butyric acid (HBu), 
isovaleric acid (isoHVal), valeric acid (HVal) and caproic acid (HCa), 
were determined using a high performance liquid chromatograph (1260 
HPLC, Agilent) equipped with a refractive index detector and following 
the conditions described by Greses et al. (2021). A gas chromatograph 
(Clarus 580 GC, PerkinElmer) equipped with a thermal conductivity 
detector was used to analyses the biogas composition (CO2, CH4, N2 and 
H2). The detailed conditions of GC were previously described by Greses 
et al. (2021). 

2.4. Modelling approach 

ADM1 mathematically represents the disintegration, hydrolysis, 
acidogenesis, acetogenesis and methanogenesis steps of AD, including 
the physical–chemical reactions (liquid–gas transfer, acid-base reaction) 
and the inhibition phenomena (Batstone et al., 2002a,b). As starting 
point, the ADM1 modification proposed by Mairet et al. (2011) was used 
to predict microalgae AD behavior against an OLR perturbance. Mairet 
et al. (2011) described the hydrolysis step involved in microalgae AD 
using the Contois kinetic (Eq. (1) instead of the first-order kinetics (Eq. 
(2) implemented in the original ADM1. These equations might be 
defined as follows using carbohydrates as an example: 

ρCH = khyd,CH ⋅
XCH

KS,CH ⋅Xsu + XCH
⋅Xsu (1)  

ρCH = khyd,CH ⋅XCH (2)  

where ρCH represents the hydrolysis rate of carbohydrates, khyd,CH is the 
hydrolysis constant for carbohydrates, XCH is the carbohydrate concen-
tration, Xsu is the hydrolytic microorganisms concentration and KS,CH is 
the half saturation constant of carbohydrate hydrolysis. The Contois 
model considers the amount of substrate per biomass (microorganisms) 
unit. This model is commonly used when hydrolysis is identified as the 
limiting step of AD due to the substrate complexity (which is the case of 
microalgae (Passos et al., 2014a)), or when the digestion is conducted 
under high substrate-to-biomass ratio (organic overloading) (Vavilin 
et al., 2008). MATALB 2021® was used to simulate ADM1 modifications 
by means of the implementation of Rosen and Jeppsson (2006). 

2.4.1. Model input 
To accurately model the experimental data, detailed input values 

obtained from the feedstock characterization are required. Microalgae 
biomass composition (Table 1) was used to calculate the model input 
and the stoichiometric parameters for the CSTRs in the absence of per-
turbance (Table 2), considering the particulate organic matter distri-
bution (protein, lipids, carbohydrates and ashes) in terms of COD 
equivalent and its biodegradability (BMP). 

The characterization shown in Table 2 was also used to determine 
the initial values of the state variables, as detailed by Jimenez et al. 
(2020). The model was simulated under continuous conditions until 
achieving an equilibrium (so-called steady-state). Thereafter, the values 
resulting from the steady-state served as initial values for state variables. 

Regarding the CSTR subjected to the OLR perturbance, Xc,in, Ssu,in and 
Saa,in were dynamically changed once the process reached the steady 
state to represent the deliberately imposed organic matter content in-
crease in the influent. In the OLR perturbance, the same initial state 
variables as Control CSTR were used. 

3. Results and discussion 

3.1. Experimental data comparison with process simulation using 
anaerobic digestion model No.1 modified with Contois model 

AD of enzymatically pretreated microalgae biomass was performed 
for 160 days, evidencing a stable biogas production when perturbances 
were not applied (control reactors, Fig. 1). As a result, methane yield 
reached 171.3 ± 12.4 mLCH4⋅g TCODinf

− 1, corresponding to a biode-
gradability of 48 ± 3 %. These values agreed with previous studies 
related to microalgae biomass biomethanation via AD using an enzy-
matic pretreatment (37–52 % biodegradability) (Mahdy et al., 2015), 
demonstrating the proper functioning of the process in the CSTRs used 
as control. Conventionally, the degradation of protein-rich feedstock 
(such as microalgae) leads to a high total ammoniacal nitrogen (TAN) 
release that might provoke the AD inhibition when the concentration 
reached a threshold of 1 g TAN⋅L− 1 (Capson-Tojo et al., 2020; 
Anthonisen et al., 1976). This TAN concentration normally results in an 
AD inhibition by free ammonia nitrogen (FAN) as primary cause since 
the pH rise and the temperature provoke the equilibrium displacement 
to the non-ionic form of nitrogen. Although high ammonium concen-
tration was released during microalgae AD (928 ± 71 mg N-NH4

+⋅L− 1) 
due to the high protein content in Scenedesmus (Table 1), FAN toxicity 
was not detected. This fact was evidenced by the significant and constant 
biogas production and the absence of VFAs accumulation, which is a 
clear indicator of a well-executed AD. The values resulting from the 
control reactors described a normal microalgae AD behavior since they 
were in the range of previous studies dealing with microalgae AD. For 
instance, Mahdy et al. (2015) found a similar methane yield (128.4 ±
15.3 mLCH4⋅g TCODinf

− 1), under analogous conditions and microalgae 
pretreatment. This methane yield also fall within the range of previous 
investigation studying biogas production from microalgae subjected to a 
different disruption pretreatments (126–170 mLCH4⋅g TCODinf

− 1) (Men-
dez et al., 2015; Passos et al., 2014b). Thus, the conventional microalgae 
AD performance compared with previous studies suggested that the 
ADM1 modified with Contois model could satisfactorily simulate the 
process, as Mairet et al. (2011) proposed. Although these authors also 

Table 2 
Model input characterization.   

Parameter Description Value 

Input parameters Ssu,in (kg 
sCOD⋅m− 3) 

Monosaccharides 5.26 

Saa,in (kg 
sCOD⋅m− 3) 

Amino acids 5.87 

SIC,in (M) Inorganic carbon 0.019* 
SIN,in (M) Inorganic nitrogen 0.011* 
SI,in (kg 
sCOD⋅m− 3) 

Soluble inerts 1.08 

Xc,in (kg 
pCOD⋅m− 3) 

Complex particulate organic 
matter 

17.41 

Scat,in (M) Cations 0.024* 
San,in (M) Anions 0.0065 

* 
Stoichiometric 

parameters 
fsI,xc Soluble inerts from complex 

organic matter 
0 

fxI,xc Particulate inerts from 
complex organic matter 

0.53 

fch,xc Carbohydrates from complex 
organic matter 

0.088 

fpr,xc Proteins from complex 
organic matter 

0.221 

fli,xc Lipids from complex organic 
matter 

0.161 

Nxc (kmol⋅kg 
pCOD− 1) 

Nitrogen content of complex 
organic matter 

0.004 

NI (kmol⋅kg 
sCOD− 1) 

Nitrogen content of inerts 0.004  

* Mairet et al. (2011). 
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performed microalgae AD, the parameters were calibrated for raw 
microalgae. Considering that an enzymatic pretreatment was applied in 
the present study, a recalibration of the model was required. This pre-
treatment enhanced the disintegration step, requiring thereby to adjust 
the disintegration constant value (kdis) from 0.5 for raw microalgae 
(Mairet et al., 2011) to 1.0 for pretreated microalgae. The high kdis value 
allowed to regulate the downstream processes by the hydrolysis step, 
which also resulted in a different calibration of the hydrolysis constant 
for carbohydrates (khyd,ch), proteins (khyd,pr) and lipids (khyd,li) (Table 3). 

Once the kinetic parameters were calibrated for the pretreated 
microalgae biomass, the implementation of the Contois model was able 
to describe the experimental data in the control reactors (Fig. 1). This 
model predicted not only the daily methane production but also the 

sCOD and particulate COD (pCOD) present in the CSTR, confirming the 
suitability of the hydrolysis model using Contois kinetics to represent 
microalgae AD. To improve the pCOD simulation, it is important to 
highlight that the inert fraction fed in the CSTRs (Table 2) was modified 
according to the biodegradability resulting from control reactors when 
the process reached the steady state. Although BMP is useful to evaluate 
a residue biodegradability, this batch test normally results in an over-
estimation when compared to reactors operated in continuous mode 
since the effect of operational parameters on microorganism growth is 
not taken into account (Alzate et al., 2012). Hence, the inert fraction 
obtained once the control CSTRs reached the steady state (0.53) was 
used instead of the one resulting from BMP test (0.44). This adjustment 
yielded a more representative simulation compared to the results ob-
tained using BMP assay data (see supplementary material) in terms of 
COD, methane production, ammonia and pH evolution. 

However, the good performance of ADM1 with the Contois model in 
describing microalgae AD could not be extended to the process subjected 
to an overload. The OLR perturbance provoked a biogas decline after 9 
experimental days, reaching the complete AD inhibition after 45 days of 
shock. The process failure resulted in a VFAs accumulation of 29.2 g 
COD⋅L− 1 (mainly HAc, HPro, HBu and HVal), which is a common feature 
of inhibited AD systems (Basak et al., 2021). Accordingly, a SCOD 
accumulation of 39.3 g COD⋅L− 1 was also determined, indicating that a 
fraction of SCOD (10.1 g⋅L− 1) remained unconverted into VFAs. This fact 
denoted that not only methanogenesis but also previous steps of AD 
were affected by the perturbance. As Fig. 2 shows, ADM1 predicted a 
methane rise when the OLR increased, whereby a total biogas inhibition 
was not reproduced (Fig. 2j). Although particulate organic matter was 
fairly well simulated by ADM1 (Fig. 2a), SCOD and VFAs were under-
estimated, predicting only HAc accumulation (Fig. 2f). The absence of 
other VFAs in the simulation was attributed to the methanogens con-
sumption to produce methane, as no inhibitory factors were present. 
Accordingly, the model simulated a methanogenic archaea growth 
without exhibiting a perturbation (see supplementary material), which 
gave rise to a lower predicted value of VFAs and an overestimation of 
biogas production. 

As an attempt to improve model predictability in the CSTRs sub-
jected to an OLR shock, the maximum uptake rates (km) for HPro, HBu 
and HVal were adjusted. Hence, a notable reduction of km allowed to 
increase the accumulation of those VFAs while limiting their conversion 
into methane. This adjustment also provoked a decrease in HAc that was 
corrected by reducing the km of HAc as well. Nevertheless, the model did 
not predict the accumulated sCOD that was not transformed into VFAs. 
This fact resulted from the initial sCOD transformation into HAc to ul-
timately produce methane, leading to an overestimation of biogas pro-
duction too (see supplementary material). These results evidenced that 
ADM1 with Contois model was not able to represent the process dy-
namics in presence of perturbances. As a matter of fact, a persistent VFAs 
accumulation of 2 g COD⋅L− 1 was predicted by the model when control 
reactors were simulated again with the modified km values, confirming 
that km variations were not the key strategy to increase model accuracy. 

To simulate a biogas decline and a VFAs accumulation, the AD 
process has to experience an inhibition. According to ADM1, biogas 
production can be inhibited by nitrogen limitation (<0.0001 M of N), 
NH3 (>0.0018 M), pH or high H2 partial pressure (3.5⋅10− 6 – 1⋅10− 5), 
while acidogenesis and acetogenesis can be also inhibited by pH and H2 
(Batstone et al., 2002a,b). Although a slight inhibition by NH3 was 
predicted (INH3 = 0.75–0.5) during the organic overloading, pH oscil-
lations were not outside the conventional boundaries (6–7). As previ-
ously explained, AD of microalgae releases a high amount of ammonium 
as a consequence of protein degradation. Ammonium provokes a pH rise 
that normally results in a NH3 increase, exhibiting a direct negative 
response in biogas production (Capson-Tojo et al., 2020). However, in 
this study, the high VFAs accumulation contributed to an increase in H+

ions, preventing the pH rise due to the high accumulation of ammoniacal 
nitrogen. Thus, the co-occurrence of both factors prevented the 

Fig. 1. Time evolution of (a) particulate COD, (b) soluble COD, (c) methane 
production (d) pH and (e) free ammonia in control CSTRs. Experimental data 
(o). Predicted data (-) using ADM1 with Contois model. 

Table 3 
Kinetic parameter values from ADM1 with/without modifications.  

Kinetic 
parameter 

Description ADM11 This 
study 

kdis (d− 1) Maximum specific disintegration rate 0.5 1 
khyd,ch (d− 1) Maximum specific hydrolysis rate of 

carbohydrates 
10 1.18 

Ks,ch (kg 
COD⋅m− 3) 

Half saturation constant of 
carbohydrate hydrolysis 

0.5 0.5 

khyd,pr (d− 1) Maximum specific hydrolysis rate of 
protein 

10 0.5 

Ks,pr (kg 
COD⋅m− 3) 

Half saturation constant of protein 
hydrolysis 

0.5 0.26 

khyd,li (d− 1) Maximum specific hydrolysis rate of 
lipid 

10 1.07 

Ks,li (kg 
COD⋅m− 3) 

Half saturation constant of protein 
hydrolysis 

0.5 0.49 

Note: Parameters not described in Table 3 remained as in the original ADM1. 
1 Hydrolysis using first order kinetics. 
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inhibition by free ammonia. Likewise, the significant buffer capacity 
provided by the high ammonium content in the process also prevented a 
critical pH drop caused by high VFAs accumulation. Considering that 
there was no nitrogen limitation due to the presence of high ammonium, 
and H2 was not detected in the CSTRs subjected to an OLR shock, the 
inhibition factors described in ADM1 cannot explain the AD behavior 
against an OLR shock. These evidences agreed with the model prediction 
in which, H2 production take place in percentages lower than the limit of 
detection of the GC and no significant inhibition by H2 was simulated. As 
a matter of fact, the microbiome simulation resulted from ADM1 using 
Contois model did not evidence the inhibition of any group of bacteria as 
the OLR increased (only a slight inhibition of acetate consumers by 
FAN), confirming that the current inhibition factors were not able to 
reproduce the experimental data retrieved from the AD of microalgae 
biomass subjected to an overloading. Hence, these results suggested that 
alternative inhibition factors were required to fit ADM1 to the obtained 
experimental data. 

3.2. Anaerobic digestion model No.1 modification 

Since pH has been identified as one of the most inhibitory factors for 
methanogenic population (Eryildiz et al., 2020), pH boundaries were the 
first modification implemented. Biogas production during the OLR 
shock was in agreement with the pH oscillations, which was confirmed 
by the principal component analysis (PCA) that revealed a correlation 
between both data output (pH and methane) retrieved during the 
perturbation (see supplementary material). This fact might indicate that 
methanogenesis had a high correlation with this parameter. Although 
pH was out of inhibition threshold values (6–7) for conventional AD, 
previous studies demonstrated that AD subjected to extreme conditions 
(high VFAs and ammonium accumulation) are prone to instability 
against minor changes (Pasalari et al., 2021). This can support the fact 
that narrow pH ranges could be detrimental for AD performance. Hence, 
upper (UL) and lower (LL) limits values were adjusted as Table 4 shows. 

Once the pH limits were adjusted, the model allowed to reproduce 

the methane production shape but the volume was still slightly higher 
than that obtained experimentally (see supplementary material). Addi-
tionally, a simulation mismatch was found in the metabolites concen-
tration since the whole SCOD was transformed into HAc and reaching a 
maximum concentration of 22 g COD⋅L− 1. This fact evidenced that 
methanogenesis inhibition was not enough to also simulate the SCOD 
and VFAs accumulated during the AD overloading. Aiming at enhancing 
the model fit to the experimental data, new inhibition functions should 
be included to prevent the metabolization of VFAs into HAc, and also the 
total SCOD degradation into VFAs. 

AD inhibition has been traditionally focused on methanogenesis and 
acetogenesis stages, while hydrolysis and acidogenesis inhibition is 
normally neglected due to the higher robustness of these microorgan-
isms against process instabilities (Pasalari et al., 2021; Vavilin et al., 
2008). Nevertheless, it has been proven that VFAs can also exhibit an 
inhibitory effect on initial steps of AD. High HAc accumulation can 
hamper the degradation of longer carbon chain VFAs (HPro, HBu, HVal) 
into methane precursors (Ramos-Suarez et al., 2021), as well as the 
hydrolysis of the organic matter (Duong et al., 2022). In this regard, the 
PCA showed that VFAs (specially HAc) exhibited high correlation with 
those experimental data retrieved during the total methane production 
failure, being these parameters (VFAs and HAc) with similar impact to 
NH3 in the principal component 1 (see supplementary material). 

Some ADM1 modifications have been implemented to simulate the 
hydrolysis inhibition using an inhibition by total VFA concentration 
(Normak et al., 2015; Vavilin et al., 2008), or the inhibition of propio-
nate and butyrate uptake considering the HAc concentration in the 
function (Mo et al., 2023). Those studies modeled the inhibition 

Fig. 2. Time evolution of (a) particulate COD, (b) soluble COD, (c) volatile fatty acids (d) free ammonia, (e) soluble inorganic nitrogen (mainly ammonium), (f) 
acetate, (g) propionate, (h) butyrate, (i), valerate and (j) methane production in the CSTRs subjected to an OLR perturbance. Experimental data (o). Predicted data (-) 
using ADM1 with the Contois model. The dotted lines represent the starting and ending days of the OLR perturbance. 

Table 4 
pH limits described in ADM1 with/without modifications.  

Parameter Description ADM1 This study 

pHLL,ac Lower limit of pH inhibition 6  6.8 
pHUL,ac Upper limit of pH inhibition 7  7.2  
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separately (hydrolysis or acetogenesis), neglecting the negative simul-
taneous effect of VFAs in other AD steps. Gavala et al. (2003) proposed 
the inhibition of hydrolytic, acidogenic and acetogenic bacteria by total 
VFAs, using a single inhibition function for all the bacterial groups. 
Nevertheless, the microbiome robustness should be taken into account 
to predict the AD performance against inhibitions. For instance, the 
optimal pH for hydrolytic microorganisms has been identified in a range 
of 4.5–5.5 (Feng et al., 2018), while acidogenic ones thrive optimally at 
5.5–6.5 (Bühlmann et al., 2022). This fact suggests that hydrolytic mi-
croorganisms tolerate higher VFAs concentrations (corresponding to 
lower pH values) than acidogens, justifying the high influence of VFAs 
and HAc on the AD failure determined in the PCA. Hence, to reflect the 
inhibitory effect of VFAs on different stages of AD, two new inhibition 
functions were proposed in the present study. Firstly, to model the 
accumulation of intermediate metabolites (HPro, HBu and HVal), the 
acidogenesis and acetogenesis were limited introducing an inhibition by 
product using the non-competitive function described in Equation (3). 

Iac =
1

1 + Sac
KIac

(3)  

where Sac represents the concentration of HAc as g COD⋅L− 1 and KIac was 
the inhibition constant that was adjusted to 0.25 g COD⋅L− 1. Iac was 
included as part of the inhibition factor I1, I2, and I3 described in ADM1 
(Table 5). More specifically, I1 is used in ADM1 to limit the sugars 
transformation into HAc, HPro and HBu, and amino acids metabo-
lization into HAc, HPro, HBu and HVal, when there is an inhibition by 
pH or nitrogen limitation. I2 includes I1 and an inhibition by H2 partial 
pressure, being used to limit the fatty acids, HVal, HBu and HPro uptake. 
I3 adds the inhibition by free ammonia to I1 limiting the HAc trans-
formation into methane. Hence, the application of Iac increases the 
inhibitory effect on AD as HAc concentration increases. 

To model the hydrolysis inhibition by products, a second non- 
competitive inhibition function (equation (4) was added to the Con-
tois function for carbohydrate, proteins and lipids degradation, which is 
described as follows: 

IVFAs =
1

1 +
Sac+Spro+ Sbu+ Sval

KIVFAs

(4)  

where Spro, Sbu and Sval represented the concentration of HPro, HBu and 
HVal, respectively (g COD⋅L− 1). The inhibition constant KIVFAs was 
adjusted to 5 g COD⋅L− 1, which enables hydrolysis inhibition at a higher 

total VFA concentration than the one required to inhibit the acidogenic 
and acetogenic steps. 

Fig. 3 shows that the implementation of the inhibition functions 
allowed predicting both the methane production trend (Fig. 3 j) and the 
performance of soluble metabolites (Fig. 3). A more accurate pCOD was 
predicted (Fig. 3a) due to the slow hydrolysis imposed in the model 
when high VFAs concentration are present (such is the case of the 
organic overloading perturbances tested herein). Given VFAs are in the 
dissociated form (pKa 4.76–4.84) when pH values are close to neutrality, 
the diffusion through cell membrane is mainly limited to secondary cell 
transporters, such as H+-monocarboxylate (Warnecke and Gill, 2005). 
Thus, VFAs compete for the same carrier system than other important 
monocarboxylates including pyruvate (Poole and Halestrap, 1993), 
which is essential for cell metabolisms. As VFAs bind the same active 
sites than pyruvate, the high VFAs accumulation likely competed with 
pyruvate transport hampering the cells performance. The results ob-
tained from the model suggested that the hydrolysis inhibition function 
could successfully simulate the negative effect of high VFAs content on 
particulate organic matter degradation. Moreover, the non-immediate 
AD recovery was also very well represented since the pCOD accumula-
tion was still present after the shock, being reduced as VFAs were 
consumed. 

Likewise, the model simulated the accumulation of all VFAs and 
SCOD. As consequence of the implemented product inhibition function 
in the acidogenesis and acetogenesis steps, the rapid HAc increase 
attained during the initial days of the shock led to the accumulation of 
intermediate metabolites. This behavior can be clearly observed in the 
metabolites evolution between 100 and 120 days (Fig. 3 f-i). As HAc 
concentration decreased, the reduction of the inhibition enabled ace-
togens to uptake other VFAs. Concomitantly, the biogas production was 
also prevented during the OLR perturbance since the high HAc con-
centration hindered acetoclastic methanogenesis. The model was also 
able to simulate the bacteria behavior when HAc increase, illustrating 
that microorganisms involved in HAc degradation to produce methane 
were the first ones affected by the OLR perturbation, followed by the 
HPro consumers and HBu/HVal degraders (supplementary material). 
The inhibition by product of these microorganisms followed a similar 
explanation given above for hydrolytic bacteria, being the main differ-
ences attributed to microbial robustness attending to the intracellular 
pH and metabolisms. These results allowed to identify an OLR higher 
than 4 gCOD⋅L− 1⋅d− 1 and HAc concentration of 2.6 g⋅L− 1 as thresholds 
for AD inhibition. 

The implementation of separate inhibition functions was beneficial 
in predicting process performance, confirming that hydrolysis inhibition 
requires a remarkable higher VFAs concentration than acidogenesis/ 
acetogenesis to exhibit a metabolic decline. 

The modified model was validated with the experimental results 
retrieved from control reactors, showing also the ability to simulate 
microalgae AD in the absence of perturbances. Moreover, a prediction 
efficiency comparison between original ADM1 and the proposed modi-
fication was performed (Fig. 4). The adjustment of the results showed a 
significant increase in R2 when using the proposed modification of 
ADM1. Regarding the methane production, although R2 also improved 
when compared to original ADM1, some outliers jeopardized the ex-
pected R2 values. However, root mean square error (RMSE) confirmed 
the significant enhancement of the prediction efficiency (RMSE 0.2753 
in original ADM1 and RMSE 0.0693 in modified ADM1), validating the 
performance of the proposed ADM1 model modification. It is important 
to highlight that, giving the high pH buffer capacity in AD of protein-rich 
feedstocks, these results evidenced the relevance of monitoring HAc to 
early detect the biogas production failure in this process. 

These results demonstrated that the proposed ADM1 modification 
with new inhibition functions can very satisfactorily represent the 
collapse resulting from a microalgae AD subjected to an organic over-
loading, as well as the AD recovery after the shock and the stable AD 
performance in the absence of perturbations. Moreover, the ADM1 

Table 5 
Inhibition function in ADM1 with/without modifications.  

Inhibition 
factors 

Description ADM1 This 
study 

IpH Inhibition by pH 
exp

(

-3⋅
( pH - pHUL

pHUL- pHLL

)2 )

pH< pHUL 

1 pH>pHUL 

ADM1 

IIN,lim Inhibition by 
nitrogen 
limitation 

1

1 +
KS,IN

SIN 

ADM1 

IH2 Inhibition by H2 

partial pressure 
1

1 +
SH2

KI,H2 

ADM1 

INH3,Xac Inhibition by free 
ammonia 

1

1 +
SNH3

KI,NH3 

ADM1 

I1 Inhibition of 
sugars and amino 
acids uptake 

IpH ⋅ IIN,lim IpH ⋅ IIN, 

lim ⋅ Iac 

I2 Inhibition of VFAs 
uptake 

I1 ⋅ IH2 *I1 ⋅ IH2 

I3 Inhibition of HAc 
uptake 

I1 ⋅ INH3,Xac *I1 ⋅ 
INH3,Xac  

* These inhibition factors considered the Iac implemented in the I1 corre-
sponding to this study. 

S. Greses et al.                                                                                                                                                                                                                                   



Bioresource Technology 399 (2024) 130625

7

ability to represent not only biogas production failure but also inter-
mediate metabolites accumulation was also demonstrated, which gains 
relevance in the framework of the biorefineries based on AD as core 
technology. Since VFAs have been considered valuable building blocks 
for the industry (Dahiya et al., 2015), predicting their production via AD 
could help to estimate process yields and confirm the replicability. 

4. Conclusions 

This study proposed ADM1 modifications to improve microalgae AD 
prediction, considering not only the conventional behavior but also an 
organic overloading perturbance. Two new inhibition functions were 
added to represent the inhibition by product of the hydrolysis, acido-
genesis and acetogenesis. This model described very well the data 

Fig. 3. Time evolution of (a) particulate COD, (b) soluble COD, (c) volatile fatty acids (d) free ammonia, (e) soluble inorganic nitrogen (mainly ammonium), (f) 
acetate, (g) propionate, (h) butyrate, (i), valerate and (j) methane production in the CSTRs subjected to an OLR perturbance. Experimental data (o). Predicted data (-) 
using modified ADM1 with new inhibition functions. The dotted lines represent the starting and ending days of the OLR perturbance. 

Fig. 4. Comparison of the prediction efficiency using the original ADM1 + Contois model and the proposed modification of ADM1 + Contois model to simulate the 
CSTR subjected to OLR perturbation in terms of HAc (gCOD⋅L− 1), HPro (gCOD⋅L− 1), HBu (gCOD⋅L− 1), HVal (gCOD⋅L− 1), VFAs (gCOD⋅L− 1) and methane production 
(QCH4, mLCH4⋅d− 1). Experimental data (o). Predicted data (-). 
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retrieved from control reactors (no perturbance) and organic over-
loading (including process recovery), evidencing that the modification 
did not alter the ADM1 suitability for reproducing a normal microalgae 
AD performance. This study demonstrated that ADM1 can be improved 
to increase model predictability against one of the most frequent per-
turbations found at industrial scale. 
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